
Apps

konashi
inspector

(iOS)

	

konashi
inspector
(Android)

Hardware
INTRODUCTIONINTRODUCTION
+	Concept+	Concept
+	Architecture+	Architecture
+	Versions+	Versions

SPECIFICATIONSSPECIFICATIONS
+	Supported	devices+	Supported	devices
+	Appearance+	Appearance
+	Schematic+	Schematic

CORE	FUNCTIONSCORE	FUNCTIONS
+	Digital+	Digital
+	Analog+	Analog
+	PWM+	PWM
+	Communication+	Communication
+	Bluetooth	Low	Energy+	Bluetooth	Low	Energy
+	Event-driven+	Event-driven

API	Reference
CONSTANTSCONSTANTS
+	Pin	name+	Pin	name
+	PIO+	PIO
+	AIO+	AIO
+	PWM+	PWM
+	UART+	UART
+	I+	I CC
+	SPI+	SPI
+	Function	return+	Function	return
+	Events+	Events

BASEBASE
+	initialize+	initialize
+	find+	find
+	findWithName+	findWithName
+	disconnect+	disconnect
+	isConnected+	isConnected
+	peripheralName+	peripheralName

PROMISEPROMISE
+	done+	done
+	fail+	fail
+	then+	then

EVENTSEVENTS
+	addObserver+	addObserver
+	removeObserver+	removeObserver

	 Android

22

Objective-C

http://localhost:4000/
https://itunes.apple.com/app/konashi-inspector/id1094607353
https://play.google.com/store/apps/details?id=com.uxxu.konashi.inspector.android

DIGITAL	I/O	(PIO)DIGITAL	I/O	(PIO)
+	pinMode+	pinMode
+	pinModeAll+	pinModeAll
+	pinPullup+	pinPullup
+	pinPullupAll+	pinPullupAll
+	digitalRead+	digitalRead
+	digitalReadAll+	digitalReadAll
+	digitalWrite+	digitalWrite
+	digitalWriteAll+	digitalWriteAll

ANALOG	I/O	(AIO)ANALOG	I/O	(AIO)
+	analogReference+	analogReference
+	analogReadRequest+	analogReadRequest
+	analogRead+	analogRead
+	analogWrite+	analogWrite

PWMPWM
+	pwmMode+	pwmMode
+	pwmPeriod+	pwmPeriod
+	pwmDuty+	pwmDuty
+	pwmLedDrive+	pwmLedDrive

UARTUART
+	uartMode+	uartMode
+	uartBaudrate+	uartBaudrate
+	uartWrite+	uartWrite

II CC
+	i2cMode+	i2cMode
+	i2cStartCondition+	i2cStartCondition
+	i2cRestartCondition+	i2cRestartCondition
+	i2cStopCondition+	i2cStopCondition
+	i2cWrite+	i2cWrite
+	i2cReadRequest+	i2cReadRequest
+	i2cRead+	i2cRead

SPISPI
+	spiMode+	spiMode
+	spiWrite+	spiWrite
+	spiReadData+	spiReadData
+	spiReadRequest+	spiReadRequest

HARDWARE	CONTROLHARDWARE	CONTROL
+	reset+	reset
+	batteryLevelReadRequest+	batteryLevelReadRequest
+	batteryLevelRead+	batteryLevelRead
+	signalStrengthReadRequest+	signalStrengthReadRequest
+	signalStrengthRead+	signalStrengthRead

Extension	Board
CONSTANTS	FOR	EXTENSION	BOARDCONSTANTS	FOR	EXTENSION	BOARD
+	ADC	Extension	Board+	ADC	Extension	Board
+	AC	Drive	Extension	Board+	AC	Drive	Extension	Board
+	Grove	Extension	Board+	Grove	Extension	Board

ADC	EXTENSION	BOARDADC	EXTENSION	BOARD
+	Abstract+	Abstract
+	init+	init
+	read+	read
+	readDiff+	readDiff
+	selectPowerMode+	selectPowerMode

22

+	selectPowerMode+	selectPowerMode

AC	DRIVE	EXTENSION	BOARDAC	DRIVE	EXTENSION	BOARD
+	Abstract+	Abstract
+	init+	init
+	onDrive+	onDrive
+	offDrive+	offDrive
+	updateDuty+	updateDuty
+	selectFreq+	selectFreq

GROVE	EXTENSION	BOARDGROVE	EXTENSION	BOARD
+	Abstract+	Abstract
+	writeDigitalPort+	writeDigitalPort
+	readDigitalPort+	readDigitalPort
+	readAnalogPort

Hardware
Introduction

Concept

 既存のコンピュータの機能上の制約を超え、⽇常⽣活環境に沿った⼈（⾝体）とコンピュータとの新しいインタラクションを探る、そ
うすることで⾝の回りの世界に新しい広がりが⽣まれるのではないか。	フィジカル・コンピューティングはこのような考えのもと、
ニューヨーク⼤学	Dan	O'Sullivan	教授により提案(※1)されました。

 フィジカル・コンピューティングの思想に沿ったインタフェースの開発を⾏う場合、ソフトウェアのみならずハードウェア、意匠デザ
インなどの幅広い要素を含めて考える必要があります。	つまり、それぞれの分野で⼀定のスキルが必要となるため、⼈とコンピュータ
とのインタラクションについて深く議論することは容易ではありませんでした。

 このような背景から、これまでフィジカル・コンピューティングのツールキットとして「GAINER」「FUNNEL」「Arduino」などが
開発、提供されました。	これらはコンピュータの⼊出⼒機能を外部に拡張する⼩規模なコンピュータであり、エンジニア以外にもわか
りやすいように説明や開発環境が⼯夫されています。	モジュール化された⼊出⼒機能とその扱いやすさから、フィジカル・コンピュー
ティングを考えるためのツールとして、現在、多くのアーティスト、デザイナ、エンジニアの間で広く普及し、その相互連携に貢献して
います。

 しかし現在、我々の⽇常⽣活環境における	“コンピュータ”	という存在は、これまでの「デスクトップ型」や「ノートブック型」の端
末ではなく「スマートフォン型」や「タブレット型」の端末へと移⾏しているのではないでしょうか。

http://gainer.cc/
http://funnel.cc/
http://www.arduino.cc/

ObjectiveC Android

 このような考えから、弊社ではスマートフォンやタブレットで利⽤可能かつ、これらの開発環境で扱うことが可能なツールキットとし
て	“konashi”	の開発をおこないました。

(※1)	Tom	I.	and	Dan	O.,	Physical	Computing:	Sensing	and	Controlling	the	Physical	World	with	Computers,	Thomson,	(May,	2004).

Architecture
 konashiはiPhoneアプリから簡単にコントロールできるようになっています。

 独⾃にkonashiと同じような、無線接続で簡単にコントロールできるものを実現するためには、

Bluetooh	Low	Energy(以下BLE)	のしくみの理解
BLEモジュールを搭載したMPUの調達とBLEの通信を含めたプログラミング
上記MPUとBLEで通信するiPhoneアプリの開発

を⾏う必要があります。また、iPhoneアプリでBLEを扱うためには、CoreBluetoothAPIのハンドリングやMPUとの複雑なデータのやり
取りが必要となってきます。

そのため、konashiでは、

konashi独⾃のBLEのServiceやCharacteristicsの開発
BLEモジュール+MPUのプログラミング
iPhoneでのCoreBluetoothAPIのハンドリングを	konashi-ios-sdk	でラッピング

を⾏なっているので、konashiとiPhoneアプリの通信のハンドリングを意識することやMPUのプログラミングをせずに、iPhoneアプリか
らkonashiを簡単にコントロールすることができるようになっています。

また、konashiを操作するためのAPIもシンプルなものがほとんどです。たとえば、konashiのデジタルポートPIO0の出⼒をHIGHにする
には以下のコードだけで完結します。

[Konashi	digitalWrite:PIO0	value:HIGH];

このコードにより、iPhoneアプリからkonashiに対して「PIO0の出⼒をHIGHに」という命令が送られ、konashiに内蔵されているMPUが
それを解釈しPIO0の出⼒をHIGHにするようになっています。	 

Versions
2013年1⽉の	konashi	の発売以降、konashi	同様にふるまう	konashi	互換ハードウェアが複数登場しています。ここではそれらを紹介
し、特徴を⽰します。

詳しいハードウェアのドキュメントはこちらをご覧ください。

機能の差分の詳細については、各API仕様のドキュメント内で、このように背景⾊を変えて説明します。

https://github.com/YUKAI/konashi-ios-sdk/wiki/konashi%E3%83%95%E3%82%A1%E3%83%9F%E3%83%AA%E3%83%BC-%E3%83%8F%E3%83%BC%E3%83%89%E3%82%A6%E3%82%A7%E3%82%A2%E3%83%89%E3%82%AD%E3%83%A5%E3%83%A1%E3%83%B3%E3%83%88

商品名 販売時期 販売者 Revision 特徴、konashiに対する機能の差分

konashi 2013年1⽉
31⽇〜

ユカイ⼯学株
式会社

T1.0.0 最初の	konashi

koshian 2014年9
⽉〜

株式会社マク
ニカ

1.0.0 PIO,PWM,A/D,D/A未対応	
I2Cの⼀度に送受信できるバイト数が、20から16に変更
BLEのService,CharacteristicのUUIDを変更
OTAファームウェアアップデートに対応
koshianについて詳しくはこちら	[www.m-pression.com/]

konashi
2

2014年12
⽉〜

ユカイ⼯学株
式会社

2.0.0以
降

PIOのピン数の変更(8->6)
DAC(アナログ出⼒)未対応
UARTの対応baudrateを追加
UARTで複数バイトを⼀度に送受信を可能に
I2Cで⼀度に送受信できるバイト数を、20から16に変更
BLEのService,CharacteristicのUUIDを変更
PWMを出せるピンがPIO0-2の3本のみに変更
PWM波形の仕様変更
OTAファームウェアアップデートに対応

konashi
3

2018年1
⽉〜

ユカイ⼯学株
式会社

3.0.0以
降

konashi2.0と同様、I2C	master、SPI	masterの機能が使えます
PIOのピン数、PWMを出せるピン数はPIO0~7の8本とkonashi1の頃に戻りました
PWM波形の仕様変更(ハードPWMからソフトPWMになり精度は低下、最⼩単位
50us、周期とDutyの上限は2^32[us])
電流出⼒DAC(アナログ出⼒)に対応(AIO0,1のうち同時には1本のみ出⼒可能)
BLEのService,CharacteristicのUUIDはOTA	Service（下記）以外konashi2.0のま
ま
OTAファームウェアアップデートに対応(プロトコルはkonashi2.0と異なり、
[Silicon	Labs	OTA	Service]
になります。）	

Specifications

Supported	devices
シリーズ名 機種 使⽤OS

iPhone iPhone	4S,	iPhone	5,	iPhone	5S,	iPhone	5C,	iPhone	6,	iPhone	6	Plus,iPhone	7,iPhone	8 iOS7.1	〜

iPad iPad	Air,
iPad	mini,
iPad(第4世代	/	2012年11⽉モデル),
iPad(第3世代	/	2012年3⽉モデル)

iOS7.1	〜

iPod	touch iPod	touch(第5世代)
(注)	iPod	touch(第４世代)には
対応しておりません
2013/02/13修正

iOS7.1	〜

Appearance
konashi	2.0

http://www.m-pression.com/ja/solutions/boards/koshian
https://www.silabs.com/documents/login/application-notes/an1045-bt-ota-dfu.pdf

Top	view

Bottom	view

Layout

konashi	3.0

Top	view

http://localhost:4000/img/documents/top_large.png
http://localhost:4000/img/documents/bottom_large.png
http://localhost:4000/img/documents/layout.png
http://localhost:4000/img/documents/konashi30/top_large.png
http://localhost:4000/img/documents/konashi30/bottom_large.png

Bottom	view

Layout

Schematic
konashi2.0

konashi3.0

http://localhost:4000/img/documents/konashi30/layout.png
http://localhost:4000/img/documents/konashi_circuit_large.png

konashi	2	ではIC1の電圧が	3.0	[V]	で後段のダイオードで	0.3	[V]	電圧が落ちるため、konashi	3	ではIC1	電圧を	3.6	[V]	にしました。
センサデバイスなど繋げるICによっては電源電圧が最低でも	3.0	[V] 必要なデバイスがあるのでIC1を	3.6	[V] にしたことで接続で
きるICの選択肢を広げました。

Core	functions

Digital

konashiには、8つのデジタルI/Oピンが搭載されています。	デジタルI/Oピンでは、HighとLowの2つの状態を⼊⼒/出⼒することができま
す。

konashiの場合、デジタルI/Oの基準電圧は3Vですので、3Vまたは0Vの電圧を⼊⼒/出⼒することができます。

なお、初期状態ではすべてのデジタルI/Oは	⼊⼒	として設定されています。

デジタルI/Oピンを⼊⼒に設定した場合、pinMode,	pinModeAll	関数で内部プルアップを設定することも可能です。

pinModeAll,	digitalReadAll	での戻り値や、pinPullupAll,	digitalWriteAll	での引数は、PIO0〜PIO7を8bit(1byte)として表現しています。ど
のビットがどのピン番号に対応しているかを以下に⽰します。

PIO0が0bit⽬(LSB)に、PIO7が7bit⽬(MSB)です。

koshianはPIO未対応です。
konashi	2	は	PIO6,	PIO7	はI2C専⽤になり、PIOとしては使えません。

http://localhost:4000/img/documents/konashi30/konashi_circuit_large.png

ObjectiveC Android

ObjectiveC Android

konashi	3	は	PIO0~7全て使⽤可能です。

また、それぞれのビットの0/1がなにを表現するかはそれぞれの関数によって異なります。

関数 bit:	0 bit:	1

pinModeAll(⼊出⼒設定) ⼊⼒設定 出⼒設定

pinPullupAll(プルアップ設定) プルアップ無効 プルアップ有効

digitalWriteAll(出⼒の状態を設定) LOW(0V) HIGH(3V)

digitalReadAll(⼊⼒の状態を設定) LOW(0V) HIGH(3V)

例えば、PIO0(S1)を⼊⼒に、それ以外のPIOを出⼒に	pinModeAll	で設定する場合、⼊⼒=0、出⼒=1なので、以下のように
11111110(254)と設定します。

[Konashi	pinModeAll:0b11111110]

また、PIO0(S1)がHIGH、それ以外がLOWの状態だった時に	digitalReadAll	を実⾏すると、Objective-Cで1(00000001)は戻り値として
返ってきます。

int	input	=	[Konashi	digitalReadAll];
NSLog(@"input	=	%d",	input);			//	input	=	1(00000001)

Analog

konashi	には、3つのアナログI/Oピンが搭載されています。	アナログI/Oピンは、mV単位で⼊⼒されている電圧の値を取得したり
(ADC)、指定の電圧を出⼒することができます(DAC)。

konashiの場合、アナログI/Oの基準電圧は1.3Vですので、0Vから1.3Vまでの電圧をmV単位で⼊⼒/出⼒することができます。

なお、初期上ではすべてのアナログI/Oは	ADC(⼊⼒)	として設定されています。

注意点として、ADC	と	DAC	を同時に使⽤することはできません。ADC	として3ピンを使⽤するか、DAC	を使⽤するかのどちらかとな
ります。

また、DAC	は同時に1ピンしか使⽤できません。他のピンをDACすると他のピンは出⼒がリセットされます(ADCになる)。

konashi	2では、DAC機能は未対応です。
konashi	3では、ADC,DAC機能は共に対応しています。
またkonashi	3のDAC機能について以下に説明をします。

konashi	3のDACは電流出⼒型になっています。そのためベースボード上のショートピンで500kOhmのプルダウン抵抗を接続して
います。AIO0,AIO1を⼊⼒として使うときに、ボード上の電流電圧変換回路が余計な場合はCN4のショートピンを外して使って
みてください。
DACの出⼒電流は0.05~1.6[μA]が出⼒されます。
DACの出⼒電圧はCN4のショートピンでショートしている場合は出⼒電圧は25~800[mV]が出⼒されます。

DACを⼆つ使⽤することはできないですが、DACとADC２つを同時に使⽤することは可能です。

PWM
PWM(Pulse	Width	Modulation：パルス幅変調）は、ピンのON/OFFを繰り返すことでパスルを出⼒し、ONの時間(デューティ⽐)をコン
トロールする制御⽅式です。モータの回転速度やLEDの光の強さを制御するときによく使われる⽅式です。

konashi	には、デジタルI/O(PIO)のすべてのピンをPWMモードに設定することが可能です。

konashi	の	PWM	を使うににあたって、pwmMode,	pwmPeriod,	pwmDuty	関数でデューティ⽐や周期を決めるモード	の他に、LEDの明る
さを0〜100%で指定して簡単にドライブできるモード（	pwmLedDrive	関数を使⽤）があります。どの	PWM	モードにするかは、
pwmMode	関数で指定できます。

konashi	の	PWM	はソフトウェアPWMで実装されているため、短い間隔でデューティ⽐を変更するなど、konashi側でBLE系の処理が連
続して⾛る状態になると、⼀瞬だけ、指定したデューティー⽐を正確に出⼒できなくなる場合があります。つきましては、konashiに対
するBLEのアクセスを連続して⾏わないようにするか、デューティ⽐がずれることがあっても影響を受けないものを制御の対象としてく
ださい。

また、設定できる	PWM	の周期の最低値は	 1000	[us] 	です。

konashi	2	は、PIO0-PIO2の3本のみPWM出⼒として指定可能です。
またkonashi	2では、PWM波形の仕様が以下のとおり変更になりました。
パルス幅は20usecの倍数（⼀般的なサーボモーターであれば約3.6度刻みで動かすことが出来る解像度です）
周期は40usec〜20,460usecが設定可能です。範囲外を指定した場合は設定可能範囲に制限されます

konashi	3	は、PIO0~7全てのピンがPWM出⼒として指定可能です。
またkonashi	3のPWM波形の仕様は以下のとおりになります。
周期、duty共に50[us]が最⼩になります。逆に最⼤は2^32[us](42.5分)まで設定可能です。

Communication
konashiには、他のデバイスとシリアル通信するための機能として、I CとUARTとSPIの3種類に対応しています。

I C

I Cで利⽤する信号線は、シリアルデータ（SDA）とシリアルクロック（SCL）の2本のみです。

この通信規格は電⼦機器制御⽤のシンプルなバスシステムとして開発されたもので、規格の詳細はNXPセミコンダクター社のサイトから
知ることができます。（詳細は以下の参考⽂献をご参照ください）

2

2

2

2

ObjectiveC Android

参考⽂献：	I Cバス仕様書	バージョン2.1	(NXPセミコンダクター社)	（PDFファイル	/	780KB）

konashi	は、I Cのマスタとして動作し、接続された周辺機器（スレーブ）と通信をおこないます。

2つの信号線SDA，SCLは、konashi	ではそれぞれ	PIO6	(SDA)、PIO7	(SCL)	が対応し	ています。	上記の図のように接続し、デバイスの
通信プロトコルに応じてプログラムを作成することで、I C対応のLCDやセンサなどのデバイスと通信することができます。

注意点として、SDA	と	SCL	には必ずプルアップ抵抗を挿⼊してください。

konashiライブラリ	のI C⽤関数	を利⽤することで、効率よくI C	通信のプログラミングが可能です。

konashi	ではI2Cで⼀度に送受信できるバイト数が	18Byte	ですが、koshian、konashi	2	,konashi	3では	16Byte	に変更しました。

UART

UARTは調歩同期⽅式によるシリアル通信を⾏う機能の総称であり、konashi	ではこれをもちいて	RS-232(ANSI/TIA/EIA-232-F-1997)	に
準拠したシリアル通信をおこなうことができます。

konashi	は、送信データ線（TX）と受信データ線(RX)の2本の信号線を利⽤して、UARTでのシリアル通信を⾏います。	上記の図のよう
に接続し、プログラムを作成することでPCなどの周辺機器と簡単に通信することができます。

信号の電圧は	3V	です。

設定できる通信速度は	Constants	/	UART	をご覧ください。

バージョン毎に取り得るUARTの通信速度	[bps]	は以下のとおりです。
konashi	:	2400,	9600
konashi	2	:	9600,	19200,	38400,	57600,	76800,	115200
konashi	3	:	9600,	19200,	38400,	57600,	76800,	115200

また、konashiでは、⼀度に	1Byte	ずつしか送受信できなかったところ、konashi	2,konashi	3では	18Byte	まで⼀度に読み書きできる
ようになりました。

データを送信する場合は	uartWrite	を実⾏してください。

データを受信する場合は、 KONASHI_EVENT_UART_RX_COMPLETE 	イベントを	addObserver	でキャッチしてください。

2

2

2

2 2

http://www.nxp.com/documents/other/39340011_jp.pdf

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				//	Do	any	additional	setup	after	loading	the	view,	typically	from	a	nib.
				
				[Konashi	initialize];
				
				[Konashi	addObserver:self	selector:@selector(recvUartRx)	name:KONASHI_EVENT_UART_RX_COMPLETE];
}

-	(void)	recvUartRx
{
				NSLog(@"UartRx	%d",	[Konashi	uartRead]);
}

-	(IBAction)find:(id)sender	{
				[Konashi	find];
}

SPI
SPI通信で扱う信号線は

CS PIO2

MISO PIO3

MOSI PIO4

CLK PIO5

となっています。	KonashiのライブラリのSPI⽤関数を利⽤することで、効率よくSPI通信のプログラムをすることが可能です。

konashi2	ではSPIを使うにはOTAが必要でしたが、	konashi3	ではOTA不要でSPIを使うことができます。

Bluetooth	Low	Energy
Bluetooth	Low	Energy(以下、BLE)はBluetooth	SIG	によって策定された低消費電⼒版Bluetoothであり、iPhone	や	iPad，最新のMacBook

にも搭載されるようになりました。

konashi	は、このBLEを利⽤してiPhoneやiPadと接続されます。

konashi	は	初めてのユーザにも簡単に使⽤していただけるように設計しているため、CPUがスリープに⼊っている時間が少ないなど、省
電⼒設計になっておりません。普通のBLEデバイスよりも消費電⼒が⼤きくなっておりますのでご注意ください。

以下に、konashi	のServiceやCharacteristicsのUUIDを⽰します。

konashi	2	,konashi	3では	ServiceやCharacteristicsのUUIDを変更しています。

Services

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

Konashi	Service FF00 229BFF00-03FB-40DA-98A7-B0DEF65C2D4B

Characteristics
PIO

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

PIO	Setting 3000 229B3000-03FB-40DA-98A7-B0DEF65C2D4B

PIO	PullUp 3001 229B3001-03FB-40DA-98A7-B0DEF65C2D4B

PIO	Output 3002 229B3002-03FB-40DA-98A7-B0DEF65C2D4B

PIO	Input	Notification 3003 229B3003-03FB-40DA-98A7-B0DEF65C2D4B

PWM

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

PWM	Config 3004 229B3004-03FB-40DA-98A7-B0DEF65C2D4B

PWM	Parameter 3005 229B3005-03FB-40DA-98A7-B0DEF65C2D4B

PWM	Duty 3006 229B3006-03FB-40DA-98A7-B0DEF65C2D4B

Analog

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

Analog	Drive 3007 229B3007-03FB-40DA-98A7-B0DEF65C2D4B

Analog	Read	0 3008 229B3008-03FB-40DA-98A7-B0DEF65C2D4B

Analog	Read	1 3009 229B3009-03FB-40DA-98A7-B0DEF65C2D4B

Analog	Read	2 300A 229B300A-03FB-40DA-98A7-B0DEF65C2D4B

I C

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

I2C	Config 300B 229B300B-03FB-40DA-98A7-B0DEF65C2D4B

I2C	Start	Stop 300C 229B300C-03FB-40DA-98A7-B0DEF65C2D4B

I2C	Write 300D 229B300D-03FB-40DA-98A7-B0DEF65C2D4B

I2C	Read	Parameter 300E 229B300E-03FB-40DA-98A7-B0DEF65C2D4B

I2C	Read 300F 229B300F-03FB-40DA-98A7-B0DEF65C2D4B

UART

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

UART	Config 3010 229B3010-03FB-40DA-98A7-B0DEF65C2D4B

UART	Baud	Rate 3011 229B3011-03FB-40DA-98A7-B0DEF65C2D4B

UART	TX 3012 229B3012-03FB-40DA-98A7-B0DEF65C2D4B

UART	RX	Notification 3013 229B3013-03FB-40DA-98A7-B0DEF65C2D4B

Hardware	control

Name UUID	(konashi) UUID	(konashi	2,konashi	3)

Hardware	Reset 3014 229B3014-03FB-40DA-98A7-B0DEF65C2D4B

Low	Battery	Notification 3015 229B3015-03FB-40DA-98A7-B0DEF65C2D4B

2

Event-driven
konashiはiPhoneとは無線で接続されているため、konashiの状態を取得するにも数msほど通信時間を要します。取得できるまで待機す
る場合スレッドにロックが掛かってしまうため、基本的に⾮同期でデータを取得することになります。そのため、取得完了時にはイベン
トという形で、iPhoneアプリに対して通知されます。

konashiを使うにあたっての、基本的なイベントサイクルは以下のようになります。灰⾊の部分がアプリを起動してから、konashiの接続
を切断するまでに発⾏されるイベントです。

また上記とは別に、Read系のAPI実⾏したあとに取得完了イベントも発⾏されます。これらのイベントを取得するために
は、addObserver	という関数を使⽤し、イベントがあったときに実⾏される関数(イベントオブザーバ)を登録します。イベントの種類は
Constants	-	Events	をご覧ください。

API	Reference
iOS	SDKに関するより詳しいドキュメントはこちらを参照ください。

Constants

http://localhost:4000/appledoc/index.html

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

Pin	name

KonashiDigitalIO0 0 デジタルI/Oの0ピン⽬

KonashiDigitalIO1 1 デジタルI/Oの1ピン⽬

KonashiDigitalIO2 2 デジタルI/Oの2ピン⽬

KonashiDigitalIO3 3 デジタルI/Oの3ピン⽬

KonashiDigitalIO4 4 デジタルI/Oの4ピン⽬

KonashiDigitalIO5 5 デジタルI/Oの5ピン⽬

KonashiDigitalIO6 6 デジタルI/Oの6ピン⽬

KonashiDigitalIO7 7 デジタルI/Oの7ピン⽬

KonashiS1 0 タクトスイッチ（ジャンパ	をショートすることで、	デジタルI/Oの0ピン⽬	に接続されます）

KonashiLED2 1 ⾚⾊LED（ジャンパ	をショートすることで、	デジタルI/Oの1ピン⽬	に接続されます）

KonashiLED3 2 ⾚⾊LED（ジャンパ	をショートすることで、	デジタルI/Oの2ピン⽬	に接続されます）

KonashiLED4 3 ⾚⾊LED（ジャンパ	をショートすることで、	デジタルI/Oの3ピン⽬	に接続されます）

KonashiLED5 4 ⾚⾊LED（ジャンパ	をショートすることで、	デジタルI/Oの4ピン⽬	に接続されます）

KonashiAnalogIO0 0 アナログI/Oの0ピン⽬

KonashiAnalogIO1 1 アナログI/Oの1ピン⽬

KonashiAnalogIO2 2 アナログI/Oの2ピン⽬

KonashiI2C_SDA 6 I CのSDAのピン(デジタルI/Oの6ピン⽬)

KonashiI2C_SCL 7 I CのSCLのピン(デジタルI/Oの7ピン⽬)

PIO

KonashiLevelHigh 1 ピンの出⼒をHIGH(3V)にする

KonashiLevelLow 0 ピンの出⼒をLOW(0V)にする

KonashiPinModeOutput 1 ピンの⼊出⼒設定を出⼒に

KonashiPinModeInput 0 ピンの⼊出⼒設定を⼊⼒に

KonashiPinModePullup 1 ピンのプルアップ設定をON

KonashiPinModeNoPulls 0 ピンのプルアップ設定をOFF

AIO

2

2

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

Konashi.analogReference 1300 アナログ⼊出⼒の基準電圧	1300mV

PWM

KonashiPWMModeDisable 0 指定したPIOをPWMとして使⽤しない(デジタルI/Oとして使⽤)

KonashiPWMModeEnable 1 指定したPIOをPWMとして使⽤する

KonashiPWMModeEnableLED 2 指定したPIOをLEDモードとしてPWMとして使⽤する

KonashiLEDPeriod 10000 LEDモード時のPWMの周期は10ms

UART

KonashiUartModeDisable 0 UART無効

KonashiUartModeEnable 1 UART有効

KonashiUartBaudrateRate2K4 0x000a 2400bps

KonashiUartBaudrateRate9K6 0x0028 9600bps

KonashiUartBaudrateRate19K2 0x0050 19200bps

KonashiUartBaudrateRate38K4 0x00a0 38400pbs

KonashiUartBaudrateRate57K6 0x00f0 57600pbs

KonashiUartBaudrateRate76K8 0x0140 76800pbs

KonashiUartBaudrateRate115K2 0x01e0 115200pbs

I C

KonashiI2CModeDisable 0 I Cを無効にする

KonashiI2CModeEnable 1 I Cを有効にする(100kbpsモードがデフォルト)

KonashiI2CModeEnable100K 1 100kbpsモードでI2Cを有効にする

KonashiI2CModeEnable400K 2 400kbpsモードでI2Cを有効にする

KonashiI2CConditionStop 0 ストップコンディション

KonashiI2CConditionStart 1 スタートコンディション

KonashiI2CConditionRestart 2 リスタートコンディション

2

2

2

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

SPI

KonashiSPIModeEnableCPOL0CPHA0 0 クロックを正論理にし、0から1に切り替わるタイミングでデータを取り込む

KonashiSPIModeEnableCPOL0CPHA1 1 クロックを正論理にし、1から0に切り替わるタイミングでデータを取り込む

KonashiSPIModeEnableCPOL1CPHA0 2 クロックを負論理にし、0から1に切り替わるタイミングでデータを取り込む

KonashiSPIModeEnableCPOL1CPHA1 3 クロックを負論理にし、1から0に切り替わるタイミングでデータを取り込む

KonashiSPIModeDisable -1 SPI通信を無効にする

KonashiSPISpeed200K 20 通信速度を200kbsに設定する

KonashiSPISpeed500K 50 通信速度を500kbsに設定する

KonashiSPISpeed1M 100 通信速度を1Mbsに設定する

KonashiSPISpeed2M/td> 200 通信速度を2Mbsに設定する

KonashiSPISpeed3M 300 通信速度を3Mbsに設定する

KonashiSPISpeed6M 600 通信速度を6Mbsに設定する

KonashiSPIBitOrderLSBFirst 0 LSBからデータを転送する ​

KonashiSPIBitOrderMSBFirst 1 MSBからデータを転送する

Function	return

KonashiResultSuccess 0 成功時

KonashiResultFailure 1 失敗時

Events

KonashiEventCentralManagerPowerOnNotification CoreBluetoothのセントラルマネージャが起動した時

KonashiEventPeripheralNotFoundNotification findWithNameで指定した名前のkonashiが⾒つからなかった時

KonashiEventPeripheralFoundNotification findWithNameで指定した名前のkonashiが⾒つかった時

KonashiEventConnectedNotification konashiに接続した時(まだこの時はkonashiが使える状態ではありません)

KonashiEventDisconnectedNotification konashiとの接続を切断した時

KonashiEventReadyToUseNotification konashiに接続完了した時(この時からkonashiにアクセスできるようになります)

KonashiEventDigitalIODidUpdateNotification PIOの⼊⼒の状態が変化した時

KonashiEventAnalogIODidUpdateNotification AIOのどれかのピンの電圧が取得できた時

KonashiEventAnalogIO0DidUpdateNotification AIO0の電圧が取得できた時

KonashiEventAnalogIO1DidUpdateNotification AIO1の電圧が取得できた時

KonashiEventAnalogIO2DidUpdateNotification AIO2の電圧が取得できた時

KonashiEventI2CReadCompleteNotification I Cからデータを受信した時

KonashiEventUartRxCompleteNotification UARTのRxからデータを受信した時

KonashiEventSpiWriteCompleteHandler SPI経由でのデータ書き込み完了時に呼び出されます。呼びだされた瞬間からSPI
モジュールから受け取るデータを取得することができます。

KonashiEventSpiReadCompleteHandler spiReadRequest	メソッドを⽤いてデータを受信した時に呼び出されます。

KonashiEventBatteryLevelDidUpdateNotification konashiのバッテリーのレベルを取得できた時

KonashiEventSignalStrengthDidUpdateNotification konashiの電波強度を取得できた時

Base

initialize
Description
konashiの初期化を⾏います。

⼀番最初に表⽰されるViewControllerのviewDidLoadなど、konashiを使う前に必ず	 initialize 	をしてください。

Syntax

[Konashi	initialize];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

find

2

ObjectiveC Android

ObjectiveC Android

Description
iPhone周辺のkonashiを探します。	この関数を実⾏した後、周りにあるkonashiのリストが出現します。リストに列挙されているkonashi

のひとつをクリックすると、konashiに⾃動的に接続されます。その後、KonashiEventConnectedNotification

KonashiEventReadyToUseNotificationのイベントが発⽕するので、事前にこれらのイベントを	addObserver	でキャッチできるようにし
ておいてください。本来、KonashiEventCentralManagerPowerOnNotification	のイベント以前に	find	を実⾏しても無効ですが、この場合
に限り、	KonashiEventCentralManagerPowerOnNotificationのイベント後に⾃動的に	find	が遅延実⾏されるように調整されています。

Syntax

[Konashi	find];

Parametar
なし

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

findWithName

Description
konashiの名前を指定して接続します。	find	の場合はkonashiのリストが出現しますが、findWithName	を実⾏した場合はリストが出ずに
⾃動的に接続されます。	名前に関しては、	find	を実⾏することによって下から出現するリストでリストアップされる	 konashi#4-0452

などの⽂字列です。konashi#*-****	の*部分の数字は、konashiの緑⾊チップのシール上に記載されている番号と同じです。	もし、指定し
た名前が⾒つからない場合は	KonashiEventPeripheralNotFoundNotificationが発⽕されます。	本
来、KonashiEventCentralManagerPowerOnNotification	のイベント以前に	 findWithName 	を実⾏しても無効ですが、この場合に限
り、KonashiEventCentralManagerPowerOnNotification	のイベント後に⾃動的に	 findWithName 	が遅延実⾏されるように調整されてい
ます。

Syntax

[Konashi	findWithName:(NSString	*)name];

Parameters

name NSString* 接続したいkonashiの名前。例："konashi#4-0452"

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

Examples
konashi#4-0452	のkonashiを探して接続する

[Konashi	findWithName:@"konashi#4-0452"];

disconnect

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

Description
konashiとの接続を解除します。

注意注意
iOS6.1より古いiOSの場合、Core	Bluetooth	APIにバグがあり、この関数は正常に動作しません。iOS6.1以上では正しく動作しまiOS6.1より古いiOSの場合、Core	Bluetooth	APIにバグがあり、この関数は正常に動作しません。iOS6.1以上では正しく動作しま
す。す。

Syntax

[Konashi	disconnect];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

isConnected
Description
konashiと接続中かを返します。

KonashiEventConnectedNotification	のイベントが発⽕するタイミングで TRUE となります。それ以前は FALSE です。

Syntax

[Konashi	isConnected];

Parameters
なし

Returns
BOOL

peripheralName

ObjectiveC Android

Description
接続中のkonashiの名前を返します。	konashiに接続していない状態で	peripheralName	を実⾏すると空⽂字	 @"" 	が返ります。

Syntax

[Konashi	peripheralName];

Parameters
なし

Returns
NSString* 	(例:	konashi#4-0452)

Example

NSString*	name	=	[Konashi	peripheralName];
NSLog(name);

Events

addObserver(on)/addListener

ObjectiveC Android

Description
konashiに関するイベントをキャッチすることができます。	konashiとiPhoneは	BLEで繋がっているため、konashiの状態やピンの状態は
⾮同期で取得することになります。	たとえば、AIOピンの電圧を取得するには、analogReadRequestでkonashiにリクエストを送
り、KonashiEventAnalogIODidUpdateNotification	という取得完了イベントを受信した後にAIOピンの電圧を参照できるようになります。
どのようなイベントがあるかは	Constants	/	Eventsを参照してください。

Syntax

[Konashi	addObserver:(id)notificationObserver	selector:(SEL)notificationSelector	name:(NSString*)notificationName];

Parameters

notificationObserver id オブザーバを指定します

selector SEL イベント発⽕時に呼び出される関数を指定します

name NSString* イベント名を指定します。詳細は	Constants	-	Events	を参照してください。

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

Example

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				[Konashi	addObserver:self	selector:@selector(konashiConnected)	name:KonashiEventConnectedNotification];
}

-	(void)	konashiConnected
{
				NSLog(@"CONNECTED");
}

removeObserver/removeListener

Description
addObserverで⾏ったkonashiイベントオブザーバを削除します。

Syntax

[Konashi	addObserver:(id)notificationObserver	selector:(SEL)notificationSelector	name:(NSString*)notificationName];

Parameters

notificationObserver id オブザーバを指定します

selector SEL イベント発⽕時に呼び出される関数を指定します

name NSString* イベント名を指定します。詳細は	Constants	-	Events	を参照してください。

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

Example

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				[Konashi	addObserver:self	selector:@selector(konashiConnected)	name:KonashiEventConnectedNotification];
}

-	(void)	konashiConnected
{
				NSLog(@"CONNECTED");
}

Android	Promise

done
Description
PromiseオブジェクトのActionが成功したときに実⾏するcallbackの設定を⾏います。	詳細はjdeferred/jdeferred	·	GitHubをご覧くださ
い。

Syntax

//pmはPromiseオブジェクト
pm.done((DoneCallback<T>)callback);

Parameters

callback DoneCallback 設定するcallback。ジェネリクスTは受け取る結果の型、すなわちPromiseオブジェクトのジェネリクスの1
番⽬の型

Returns
Promise<T,	BletiaException,	Object>

https://github.com/jdeferred/jdeferred

Example
LED2をOUTPUTにする。成功した場合Succeededと表⽰する。

mKonashiManager.pinMode(Konashi.LED2,	Konashi.OUTPUT).done(new	DoneCallback<BluetoothGattCharacteristic>()	{
				@Override
				public	void	onDone(BluetoothGattCharacteristic	result)	{
								Log.d("Konashi",	"Succeeded");
				}
});

fail
Description
PromiseオブジェクトのActionが失敗したときに実⾏するcallbackの設定を⾏います。	詳細はjdeferred/jdeferred	·	GitHubをご覧くださ
い。

Syntax

//pmはPromiseオブジェクト
pm.fail((FailCallback<T>)callback);

Parameters

callback FailCallback 設定するcallback。ジェネリクスTは受け取る結果の型、すなわちPromiseオブジェクトのジェネリクスの1番
⽬の型

Returns
Promise<T,	BletiaException,	Object>

Example
LED2をOUTPUTにする。失敗した場合Failedと表⽰する。

mKonashiManager.pinMode(Konashi.LED2,	Konashi.OUTPUT).fail(new	FailCallback<BluetoothGattCharacteristic>()	{
				@Override
				public	void	onFail(BluetoothGattCharacteristic	result)	{
								Log.d("Konashi",	"Failed");
				}
});

then
Description
PromiseオブジェクトのActionが成功/失敗したときに実⾏するcallbackの設定を⾏います。	詳細はjdeferred/jdeferred	·	GitHubをご覧くだ
さい。

Syntax

//pmはPromiseオブジェクト
pm.then((DoneCallback<T>)callback1);
pm.then((DoneCallback<T>)callback1,	(FailCallback<T>)callback2);

https://github.com/jdeferred/jdeferred
https://github.com/jdeferred/jdeferred

ObjectiveC Android

pm.then((DonePipe)pipe);

Parameters

callback1 DoneCallback 成功した際に呼ばれるcallback。ジェネリクスTは受け取る結果の型、すなわちPromiseオブジェクトの
ジェネリクスの1番⽬の型

callback2 FailCallback (Optional)失敗した際に呼ばれるcallback。ジェネリクスTは受け取る結果の型、すなわちPromiseオブジェ
クトのジェネリクスの1番⽬の型

pipe DonePipe 設定するpipe

Returns
Promise<T,	BletiaException,	Object>

Example
LED2をOUTPUTにする。成功した場合Succeededと表⽰し失敗した場合Failedと表⽰する。

mKonashiManager.pinMode(Konashi.LED2,	Konashi.OUTPUT).then(new	DoneCallback<BluetoothGattCharacteristic>()	{
				@Override
				public	void	onDone(BluetoothGattCharacteristic	result)	{
								Log.d("Konashi",	"Succeeded");
				}
},	new	FailCallback<BluetoothGattCharacteristic>()	{
				@Override
				public	void	onFail(BluetoothGattCharacteristic	result)	{
								Log.d("Konashi",	"Failed");
				}
});

Digital	I/O	(PIO)

pinMode
Description
PIOのピンを⼊⼒として使うか、出⼒として使うかの設定を⾏います。詳細は	Core	functions	/	Digital	をご覧ください。

ObjectiveC Android

Syntax

[Konashi	pinMode:(int)pin	mode:(int)mode];

Parameters

pin int 設定するPIOのピン名。設定可能なピン名は	Constants	/	Pin	name	をご覧ください。

mode int ピンに設定するモード。 KonashiPinModeInput 	か	 KonashiPinModeOutput 	が設定できます。詳細は	Constants	/
PIO	をご覧ください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
LED2をOUTPUTにする

[Konashi	pinMode:LED2	mode:OUTPUT];

pinModeAll

Description
PIOの特定のピンの出⼒状態を設定します。	この関数での戻り値は、PIO0〜PIO7の⼊⼒状態が8bit(1byte)で表現されます。bitとピンの
対応は以下です。

それぞれのビットで、0は⼊⼒を、1は出⼒を表現しています。	例えばこの関数で、PIO0(S1)を⼊⼒に、それ以外のPIOを出⼒に設定す
る場合、⼊⼒=0、出⼒=1なので、以下のように11111110(254)と設定します。

[Konashi	pinModeAll:0b11111110];

詳細は	Core	functions	/	Digital	をご覧ください。

Syntax

[Konashi	pinModeAll:(int)mode];

Parameters

mode int PIO0	〜	PIO7	の計8ピンの設定。 OUTPUT 	を1、 INPUT 	を0として	0x00	〜	0xFF	を指定してください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
PIOすべてのピンをOUTPUTにする

[Konashi	pinModeAll:0xFF];

ObjectiveC Android

ObjectiveC Android

pinPullup
Description
PIOのピンをプルアップするかの設定を⾏います。

初期状態では、PIOはプルアップされていません。詳細は	Core	Functions	/	Digital	の項をご覧ください。

Syntax

[Konashi	pinPullup:(int)pin	mode:(int)mode];

Parameters

pin int 設定するPIOのピン名。設定可能なピン名は	Constants	/	Pin	name	をご覧ください。

mode int ピンをプルアップするかの設定。 KonashiPinModePullup 	か	 KonashiPinModeNoPulls 	が設定できます。詳細は
Constants	/	PIO	定数をご覧ください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
PIO7をプルアップする

[Konashi	pinPullup:PIO7	mode:PULLUP];

pinPullupAll

ObjectiveC Android

Description
PIOの特定のピンの出⼒状態を設定します。	この関数での戻り値は、PIO0〜PIO7の⼊⼒状態が8bit(1byte)で表現されます。bitとピンの
対応は以下です。

それぞれのビットでは、プルアップ無効を0、プルアップ有効を1として表現します。	例えばこの関数で、PIO0(S1)をプルアップし、そ
れ以外はプルアップ無効にする場合、以下のように00000001(1)と設定します。

[Konashi	pinPullupAll:0b00000001];

詳細は	Core	functions	/	Digital	をご覧ください。

Syntax

[Konashi	pinPullupAll:(int)mode];

Parameters

pin int 設定するPIOのピン名。設定可能なピン名は	Constants	/	Pin	name	をご覧ください。

mode int PIO0	〜	PIO7	の計8ピンのプルアップの設定。0x00	〜	0xFF	を指定してください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
PIOのすべてのピンをプルアップする

[Konashi	pinPullupAll:0xFF];		//	0b11111111,	255

digitalRead
Description
PIOの特定のピンの⼊⼒状態を取得します。

ピンの⼊⼒状態を取得する前に、必ず	pinMode,	pinModeAll	でピンのモードを⼊⼒にしておいてください。出⼒モードの場合は正しい⼊
⼒状態を取得することはできません。

詳細は	Core	functions	/	Digital	をご覧ください。

ObjectiveC Android

Syntax

[Konashi	digitalRead:(int)pin];

Parameters

pin int PIOのピン名。指定可能なピン名は	Constants	/	Pin	name	をご覧ください。

Returns
KonashiLevelHigh 	もしくは	 KonashiLevelLow

Example
S1の⼊⼒の状態を取得する

[Konashi	digitalRead:S1];

digitalReadAll

Description
PIOのすべてのピンの状態を取得します。	この関数での戻り値は、PIO0〜PIO7の⼊⼒状態が8bit(1byte)で表現されます。bitとピンの対
応は以下です。

それぞれのビットで、0はLOW(0V)を、1はHIGH(3V)を表現しています。	例えば、PIO0(S1)がHIGH、それ以外がLOWの状態だった時に
この関数を実⾏すると、00000001(1)が戻り値として返ってきます。

int	input	=	[Konashi	digitalReadAll];
NSLog(@"input	=	%d",	input);			//	input	=	1

詳細は	Core	functions	/	Digital	をご覧ください。

Syntax

[Konashi	digitalReadAll];

Parameters
なし

Returns
PIOの8ピンの⼊⼒情報(0x00〜0xFF)

Example
PIOのすべてのピンの⼊⼒状態を取得する。

[Konashi	digitalReadAll];

digitalWrite

ObjectiveC Android

ObjectiveC Android

Description
PIOの特定のピンの出⼒状態を設定します。

詳細は	Core	functions	/	Digital	をご覧ください。

Syntax

[Konashi	digitalWrite:(int)pin	value:(int)value];

Parameters

pin int PIOのピン名。指定可能なピン名は	Constants	/	Pin	name	をご覧ください。

value int 設定するPIOの出⼒状態。 KonashiLevelHigh 	もしくは	 KonashiLevelLow 	が指定可能です。詳細は	Constants	/
PIO	をご覧ください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example

[Konashi	digitalWrite:LED2	value:HIGH];

digitalWriteAll

ObjectiveC Android

Description
PIOの特定のピンの出⼒状態を設定します。	この関数での戻り値は、PIO0〜PIO7の⼊⼒状態が8bit(1byte)で表現されます。bitとピンの
対応は以下です。

それぞれのビットで、0はLOW(0V)を、1はHIGH(3V)を表現しています。	例えば、この関数でPIO3(LED4)をHIGH、それ以外をLOWの状
態にする場合、00001000(8)を引数に設定します。

[Konashi	digitalWriteAll:0b00001000];

詳細は	Core	functions	/	Digital	をご覧ください。

Syntax

[Konashi	digitalReadAll];

Parameters

value int PIO0〜PIO7の出⼒に設定する値。	0x00	〜	0xFF	が設定可能です。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
PIOのすべてのピンをHIGHにする

[Konashi	digitalWriteAll:0xFF];

Analog	I/O	(AIO)

analogReference
Description
アナログ⼊出⼒の基準電圧を返します。

Syntax

[Konashi	analogReference];

Parameters
なし

Returns
1300	が返ります(mV)。

analogReadRequest

ObjectiveC

ObjectiveC

ObjectiveC

Description
AIO	の指定のピンの⼊⼒電圧を取得するリクエストを	konashi	に送ります。

この関数は	konashi	にリクエストを送るものなので、実際に値を取得するには、 KonashiEventAnalogIODidUpdateNotification 	もしく
は	Constants	/	Events	に定義されている⼊⼒電圧取得完了イベントを	addObserver	でキャッチした後、analogRead	で値を取得できま
す。

アナログの機能に関しては、	Core	functions	/	Analog	をご覧ください。

Syntax

[Konashi	analogReadRequest:(int)pin];

Parameters

pin int AIOのピン名。指定可能なピン名は	 KonashiAnalogIO0 ,	 KonashiAnalogIO1 ,	 KonashiAnalogIO2 	です。詳細は
Constants	/	Pin	name	をご覧ください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
AIO0の⼊⼒電圧を取得する

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				
				[Konashi	addObserver:self	selector:@selector(konashiReady)	name:KONASHI_EVENT_READY];
				[Konashi	addObserver:self	selector:@selector(readAio0)	name:KONASHI_EVENT_UPDATE_ANALOG_VALUE_AIO0];
}

//	konashiを探すボタンタップのアクション
-	(IBAction)findKonashi:(id)sender	{
				[Konashi	find];
}

//	AIO0電圧取得ボタンタップのアクション
-	(IBAction)requestReadAio0:(id)sender	{
				[Konashi	analogReadRequest:AIO0];
}

-	(void)	readAio0
{
				NSLog(@"READ_AIO0:	%d",	[Konashi	analogRead:AIO0]);
}

analogRead

ObjectiveC Android

ObjectiveC Android

Description
AIO	の指定のピンの⼊⼒電圧を取得します。この関数で取得できる値は前回の	analogReadRequest	時に取得した電圧です。konashiの
AIOピンの電圧を取得したい場合は、まずで	analogReadRequest	konashi	に取得リクエストを送り、

KonashiEventAnalogIODidUpdateNotification

もしくは	Constants	/	Events	に定義されている⼊⼒電圧取得完了イベントを	addObserverでキャッチした後、	この関数で値を取得でき
ます。	アナログの機能に関しては、	Core	functions	/	Analogをご覧ください。

Syntax

[Konashi	analogRead:(int)pin];

Parameters

pin int AIOのピン名。指定可能なピン名は	 KonashiAnalogIO0 ,	 KonashiAnalogIO1 ,	 KonashiAnalogIO2 	です。詳細は
Constants	/	Pin	name	をご覧ください。

Returns
0	〜	1300	までの、mV単位の値が返ります。

Examples

-	(void)viewDidLoad
						{
						[super	viewDidLoad];
						
						[Konashi	initialize];
						
						[Konashi	addObserver:self	selector:@selector(konashiReady)	name:KONASHI_EVENT_READY];
						[Konashi	addObserver:self	selector:@selector(readAio0)	name:KONASHI_EVENT_UPDATE_ANALOG_VALUE_AIO0];
						}

						//	konashiを探すボタンタップのアクション
						-	(IBAction)findKonashi:(id)sender	{
						[Konashi	find];
						}

						//	AIO0電圧取得ボタンタップのアクション
						-	(IBAction)requestReadAio0:(id)sender	{
						[Konashi	analogReadRequest:AIO0];
						}

						-	(void)	readAio0
						{
						NSLog(@"READ_AIO0:	%d",	[Konashi	analogRead:AIO0]);
						}

analogWrite

ObjectiveC Android

Description
AIO	の指定のピンに任意の電圧を出⼒します。	指定できる最⼤の電圧は	1300	[mV]	です。	アナログの機能に関しては、	Core	functions	/

Analogをご覧ください。

Syntax

[Konashi	analogWrite:(int)pin	milliVolt:(int)milliVolt];

Parameters

pin int AIOのピン名。指定可能なピン名は	 KonashiAnalogIO0 ,	 KonashiAnalogIO1 ,	 KonashiAnalogIO2 	です。詳細は
Constants	/	Pin	name	をご覧ください。

milliVolt int 設定する電圧をmVで指定します。0	〜	1300	まで設定可能です。

Returns
成功時:	 KonashiResultSuccess 	(0),	失敗時:	 KonashiResultFailure 	(-1)

Example

[Konashi	analogWrite:AIO0	milliVolt:1000];

PWM

pwmMode
Description
PIO	の指定のピンを	PWM	として使⽤する/しないかを設定します。

PIO	のいずれのピンも	PWMモード	に設定できます。

KonashiPWMModeEnable 	モードを指定する場合は、事前に	pwmPeriod,	pwmDuty	で周期とONになる時間を指定してください。

PWM	の詳細は	Core	functions	/	PWM	をご覧ください。

ObjectiveC Android

Syntax

[Konashi	pwmMode:(int)pin	mode:(int)mode];

Parameters

pin int PWMモードの設定をするPIOのピン名。 KonashiDigitalIO0 	〜	 KonashiDigitalIO7 	が設定可能です。

mode int 設定するPWMのモード。 KonashiPWMModeDisable 	,	 KonashiPWMModeEnable ,	 KonashiPWMModeEnableLED 	が設定
できます。詳細は	Constants	/	PWM	をご覧ください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
LED2を周期10ms、デューティ5msのPWMにする。

[Konashi	pwmMode:LED2	mode:KONASHI_PWM_ENABLE];
[Konashi	pwmPeriod:LED2	period:10000];
[Konashi	pwmDuty:LED2	duty:5000];

pwmPeriod
Description
指定のピンのPWM周期を設定します。

周期の単位はマイクロ秒(us)で指定してください。

PWM	の詳細は	Core	functions	/	PWM	をご覧ください。

Syntax

[Konashi	pwmPeriod:(int)pin	period:(unsigned	int)period];

Parameters

pin int PIOのピン名。 KonashiDigitalIO0 	〜	 KonashiDigitalIO7 	が設定可能です。

period unsigned
int

周期。単位はマイクロ秒(us)で32bitで指定してください。最⼤2 us	=	71.5分です。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
LED2を周期10msにする。

[Konashi	pwmPeriod:LED2	period:10000];

32

ObjectiveC Android

ObjectiveC Android

pwmDuty
Description
指定のピンのPWMのデューティ(ONになっている時間)を設定します。

単位はマイクロ秒(us)で指定してください。

PWM	の詳細は	Core	functions	/	PWM	をご覧ください。

Syntax

[Konashi	pwmDuty:(int)pin	duty:(unsigned	int)duty];

Parameters

pin int PIOのピン名。 KonashiDigitalIO0 	〜	 KonashiDigitalIO7 	が設定可能です。

duty unsigned
 int

デューティ。単位はマイクロ秒(us)で32bitで指定してください。最⼤2 us	=	71.5分です。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
LED2のデューティを5msにセットする

[Konashi	pwmDuty:LED2	duty:5000];

pwmLedDrive
Description
指定のピンのLEDの明るさを0%〜100%で指定します。

pwmLedDrive 	関数を使うには	pwmMode	で	 KonashiPWMModeEnableLED 	を指定してください。

PWM	の詳細は	Core	functions	/	PWM	をご覧ください。

32

ObjectiveC Android

Syntax

mKonashiManager.pwmLedDrive((int)pin,	(double|float)dutyRatio);

Parameters

pin int PIOのピン名。 KonashiDigitalIO0 	〜	 KonashiDigitalIO7 	が設定可能です。

ratio int LEDの明るさ。0〜100	をしてしてください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
LED2の明るさを30%にする

[Konashi	pwmMode:LED2	mode:KONASHI_PWM_ENABLE_LED_MODE];
[Konashi	pwmLedDrive:LED2	dutyRatio:30];

UART

uartMode
Description
UART	の有効/無効を設定します。

有効にする前に、uartBaudrate	でボーレートを設定しておいてください。

UART	の詳細は	Core	functions	/	Communication	-	UART	をご覧ください。

Syntax

[Konashi	uartMode:(int)mode];

Parameters

mode int 設定するUARTのモード。 KonashiUartModeDisable 	,	 KonashiUartModeEnable 	が設定できます。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
UARTを有効にする

[Konashi	uartMode:KONASHI_UART_ENABLE];

uartBaudrate

ObjectiveC Android

ObjectiveC Android

Description
UART	の通信速度を設定します。

UART	の詳細は	Core	functions	/	Communication	-	UART	をご覧ください。

Syntax

[Konashi	uartBaudrate:(int)baudrate];

Parameters

baudrate int UARTの通信速度。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
UARTの通信速度を9600bpsにする

[Konashi	uartBaudrate:KONASHI_UART_RATE_9K6];

uartWrite
Description
UART	でデータを1バイト送信します。

UART	の詳細は	Core	functions	/	Communication	-	UART	をご覧ください。

Syntax

[Konashi	uartWrite:(unsigned	char)data];

Parameters

data unsigned
char

送信するデータ。1byteです。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
'A'という⽂字をUARTで送る

[Konashi	uartWrite:'A'];

I2C

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

i2cMode
Description
I C	を有効/無効を設定します。

I C	で通信できる速度として	100kbps	と	400kbps	があり mode 引数で指定します。

I C	の詳細は	Core	functions	/	Communication	-	I C	をご覧ください。

Syntax

[Konashi	i2cMode:(int)mode];

Parameters

mode int 設定するI Cのモード。 KonashiI2CModeDisable 	,	 KonashiI2CModeEnable ,	 KonashiI2CModeEnable100K ,
KonashiI2CModeEnable400K 	が設定できます。 KonashiI2CModeEnable 	と	 KonashiI2CModeEnable100K  は等価で
す。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
I C	を100kbps(デフォルト)の通信速度で有効にする。

[Konashi	i2cMode:KONASHI_I2C_ENABLE];

i2cStartCondition

Description
I C	のスタートコンディションを発⾏します。	事前に	i2cModeで	I C	を有効にしておいてください。	I C	の詳細は	Core	functions	/

Communication	-	I Cをご覧ください。

Syntax

[Konashi	i2cStartCondition];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

i2cRestartCondition

2

2

2 2

2

2

2 2 2

2

ObjectiveC Android

ObjectiveC Android

Description
I C	のリスタートコンディションを発⾏します。	事前に	i2cModeで	I C	を有効にしておいてください。	I C	の詳細は	Core	functions	/

Communication	-	I Cをご覧ください。

Syntax

[Konashi	i2cRestartCondition];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

i2cStopCondition

Description
I C	のストップコンディションを発⾏します。	事前に	i2cModeで	I C	を有効にしておいてください。	I C	の詳細は	Core	functions	/

Communication	-	I Cをご覧ください。

Syntax

[Konashi	i2cStopCondition];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

i2cWrite

2 2 2

2

2 2 2

2

ObjectiveC

ObjectiveC Android

Description
I C	で指定したアドレスにデータを書き込みます。	事前に	i2cModeで	I C	を有効にしておいてください。	I C	の詳細は	Core	functions	/

Communication	-	I Cをご覧ください。

Syntax

[Konashi	i2cWrite:(int)length	data:(unsigned	char*)data	address:(unsigned	char)address];

Parameters

length int 書き込むデータ(byte)の⻑さ

data unsigned
char*

書き込むデータ

address unsigned
char

書き込み先アドレス

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

i2cReadRequest
Description
I C	で指定したアドレスからデータを読み込むリクエストを⾏います。

この関数はリクエストを⾏うだけでデータは取得できません。実際に値を取得するには、 KonashiEventI2CReadCompleteNotification

を	addObserver	でキャッチした後、i2cRead	で値を取得できます。

Syntax

[Konashi	i2cReadRequest:(int)length	address:(unsigned	char)address];

Parameters

length int 読み込むデータの⻑さ

address unsigned
char

読み込み先のアドレス

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

i2cRead

2 2 2

2

2

ObjectiveC Android

Description
konashi	が	I C	から読み込んだデータを取得します。この関数で取得できる値は前回の	i2cReadRequest時に取得したデータです。

Syntax

[Konashi	i2cRead:(int)length	data:(unsigned	char*)data];

Parameters

length int 読み込むデータの⻑さ

data unsigned
char*

読み込んだデータを格納するポインタ

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

SPI

spiMode/spiConfig
Description
SPIのモードを設定します。

SPIで ​設定出来るのは、動作モードと動作速度、ビットオーダーになります。

Syntax

[Konashi	spiMode:(int)mode	speed:(int)speed	bitOrder:(int)bitOrder];

Parameters

mode int SPI通信のモードを設定する。	 KonashiSPIModeEnableCPOL0CPHA0 ,	 KonashiSPIModeEnableCPOL0CPHA1 ,
KonashiSPIModeEnableCPOL1CPHA0 ,	 KonashiSPIModeEnableCPOL1CPHA1 	が設定可能です。

speed int 設定するSPIのモード。 KonashiSPISpeedSpeed200K 	~	 KonashiSPISpeedSpeed6M ,	を設定できます。詳細は
Constants	/	SPI	をご覧ください。

bitOrder int 設定するSPIのモード。 KonashiSPIBitOrderLsbFirst 	,	 KonashiSPIBitOrderMsbFirst 	が設定できます。詳細は
Constants	/	SPI	をご覧ください。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

spiWrite
Description
SPI経由でデータを書き込みます。

2

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC

Syntax

[Konashi	spiWrite:(NSData	*)data];

Parameters

data NSData* SPI通信で送信するデータ。

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
0x61~0x6bまでのデータをSPI経由で送信する。

Byte	data[11]	=	{0x61,	0x62,	0x63,	0x64,	0x65,	0x66,	0x67,	0x68,	0x69,	0x6a,	0x6b};
						[Konashi	spiWrite:[NSData	dataWithBytes:&data	length:11]];

spiReadData/spiRead
Description
SPI経由でデータを読み込みます。

Syntax

[Konashi	spiReadData];

Parameters
なし

Returns

読み込んだデータ

spiReadRequest
Description
SPI経由で取得したデータを読み込むリクエストを⾏います。koshianからiOSデバイスにデータを転送します。

Syntax

[Konashi	spiReadRequest];

Parameters
なし

ObjectiveC

ObjectiveC Android

ObjectiveC

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
SPI経由でデータを読み込み出⼒をする。

[[Konashi	shared]	setSpiWriteCompleteHandler:^{
								[Konashi	spiReadRequest];
}];
[[Konashi	shared]	setSpiReadCompleteHandler:^(NSData	*data)	{
				self.spiLogTextView.text	=	[data	description];
				NSLog(@"SPI	Read	%@",	[data	description]);
}];

Hardware	Control

reset

Description
konashi	を再起動します。	konashi	が再起動すると、⾃動的にBLEのコネクションは切断されてしまいます。

Syntax

[Konashi	reset];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example

[Konashi	reset];

batteryLevelReadRequest
Description
konashi	のバッテリ残量を取得するリクエストを	konashi	に送ります。

この関数は	konashi	にリクエストを送るものなので、実際に値を取得するには、 KonashiEventBatteryLevelDidUpdateNotification

(バッテリ残量取得完了イベント)を	addObserver	でキャッチした後、batteryLevelRead	で値を取得できます。

Syntax

ObjectiveC

ObjectiveC Android

[Konashi	batteryLevelReadRequest];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
konashi	のバッテリ残量を取得する

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				
				[Konashi	addObserver:self	selector:@selector(konashiReady)	name:KONASHI_EVENT_READY];
				[Konashi	addObserver:self	selector:@selector(battery)	KONASHI_EVENT_UPDATE_BATTERY_LEVEL];
}

//	konashiを探すボタンタップのアクション
-	(IBAction)findKonashi:(id)sender	{
				[Konashi	find];
}

//	バッテリ残量取得ボタンタップのアクション
-	(IBAction)batteryLevelReadRequest:(id)sender	{
				[Konashi	batteryLevelReadRequest];
}

-	(void)	battery
{
				NSLog(@"READ_BATTERY:	%d",	[Konashi	batteryLevelRead]);
}

batteryLevelRead

ObjectiveC

Description
konashi	のバッテリ残量を取得します。この関数で取得できる値は前回の	batteryLevelReadReques	時に取得した残量です。	konashiの
現在のバッテリ残量を取得したい場合は、まず	batteryLevelReadRequesでkonashi	に取得リクエストを送り、
KonashiEventBatteryLevelDidUpdateNotification 	を	addObserverでキャッチした後、この関数で値を取得できます。

Syntax

[Konashi	batteryLevelRead];

Parameters
なし

Returns
0	〜	100 	のパーセント単位でバッテリ残量が返ります。

Example

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				
				[Konashi	addObserver:self	selector:@selector(konashiReady)	name:KONASHI_EVENT_READY];
				[Konashi	addObserver:self	selector:@selector(battery)	KONASHI_EVENT_UPDATE_BATTERY_LEVEL];
}

//	konashiを探すボタンタップのアクション
-	(IBAction)findKonashi:(id)sender	{
				[Konashi	find];
}

//	バッテリ残量取得ボタンタップのアクション
-	(IBAction)batteryLevelReadRequest:(id)sender	{
				[Konashi	batteryLevelReadRequest];
}

-	(void)	battery
{
				NSLog(@"READ_BATTERY:	%d",	[Konashi	batteryLevelRead]);
}

signalStrengthReadRequest
Description
konashi	の電波強度を取得するリクエストを⾏います。

この関数はリクエストを⾏うだけでデータは取得できません。実際に値を取得するに
は、 KonashiEventSignalStrengthDidUpdateNotification 	(電波強度取得完了イベント)を	addObserver	でキャッチした
後、signalStrengthRead	で値を取得できます。

Syntax

ObjectiveC

ObjectiveC Android

[Konashi	signalStrengthReadRequest];

Parameters
なし

Returns
成功時:	 KonashiResultSuccess ,	失敗時:	 KonashiResultFailure

Example
konashi	の電波強度を取得する

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				
				[Konashi	addObserver:self	selector:@selector(konashiReady)	name:KONASHI_EVENT_READY];
				[Konashi	addObserver:self	selector:@selector(strength)	KONASHI_EVENT_UPDATE_SIGNAL_STRENGTH];
}

//	konashiを探すボタンタップのアクション
-	(IBAction)findKonashi:(id)sender	{
				[Konashi	find];
}

//	電波強度取得ボタンタップのアクション
-	(IBAction)signalStrengthReadRequest:(id)sender	{
				[Konashi	signalStrengthReadRequest];
}

-	(void)	strength
{
				NSLog(@"READ_STRENGTH:	%d",	[Konashi	signalStrengthRead]);
}

signalStrengthRead

ObjectiveC Android

Description
konashi	の電波強度を取得します。この関数で取得できる値は前回の	signalStrengthReadRequest	時に取得した強度(db)です。距離が近
いと-40db,	距離が遠いと-90db程度になります。	konashiの現在の電波強度を取得したい場合は、まず	signalStrengthReadRequest	で
konashi	に取得リクエストを送り、	 KonashiEventSignalStrengthDidUpdateNotification 	を	addObserver	でキャッチした後、	この関
数で値を取得できます。

Syntax

[Konashi	signalStrengthRead];

Parameters
なし

Returns
電波強度がdbで返ります。

Example

-	(void)viewDidLoad
{
				[super	viewDidLoad];
				
				[Konashi	initialize];
				
				[Konashi	addObserver:self	selector:@selector(konashiReady)	name:KONASHI_EVENT_READY];
				[Konashi	addObserver:self	selector:@selector(battery)	KONASHI_EVENT_UPDATE_BATTERY_LEVEL];
}

//	konashiを探すボタンタップのアクション
-	(IBAction)findKonashi:(id)sender	{
				[Konashi	find];
}

//	バッテリ残量取得ボタンタップのアクション
-	(IBAction)batteryLevelReadRequest:(id)sender	{
				[Konashi	batteryLevelReadRequest];
}

-	(void)	battery
{
				NSLog(@"READ_BATTERY:	%d",	[Konashi	batteryLevelRead]);
}

Extension	Boards
AD変換拡張ボード

ObjectiveC Android

KONASHI_ADC_CH0 0 AD変換ボードのチャンネル0

KONASHI_ADC_CH1 1 AD変換ボードのチャンネル1

KONASHI_ADC_CH2 2 AD変換ボードのチャンネル2

KONASHI_ADC_CH3 3 AD変換ボードのチャンネル3

KONASHI_ADC_CH4 4 AD変換ボードのチャンネル4

KONASHI_ADC_CH5 5 AD変換ボードのチャンネル5

KONASHI_ADC_CH6 6 AD変換ボードのチャンネル6

KONASHI_ADC_CH7 7 AD変換ボードのチャンネル7

KONASHI_ADC_CH0_CH1 0 チャンネル0とチャンネル1の差動⼊⼒

KONASHI_ADC_CH2_CH3 1 チャンネル2とチャンネル3の差動⼊⼒

KONASHI_ADC_CH4_CH5 2 チャンネル4とチャンネル5の差動⼊⼒

KONASHI_ADC_CH6_CH7 3 チャンネル6とチャンネル7の差動⼊⼒

KONASHI_ADC_CH1_CH0 4 チャンネル1とチャンネル0の差動⼊⼒

KONASHI_ADC_CH3_CH2 5 チャンネル3とチャンネル2の差動⼊⼒

KONASHI_ADC_CH5_CH4 6 チャンネル5とチャンネル4の差動⼊⼒

KONASHI_ADC_CH7_CH6 7 チャンネル7とチャンネル6の差動⼊⼒

KONASHI_ADC_ADDR_00 0x48 スイッチを00に設定した際のI2Cアドレス

KONASHI_ADC_ADDR_01 0x49 スイッチを01に設定した際のI2Cアドレス

KONASHI_ADC_ADDR_10 0x4a スイッチを10に設定した際のI2Cアドレス

KONASHI_ADC_ADDR_11 0x4b スイッチを11に設定した際のI2Cアドレス

KONASHI_ADC_REFOFF_ADCOFF 0 参照電圧とAD変換器のパワーをオフ

KONASHI_ADC_REFOFF_ADCON 1 参照電圧のパワーをオフ、AD変換器のパワーをオン

KONASHI_ADC_REFON_ADCOFF 2 参照電圧のパワーをオン、AD変換器のパワーをオフ

KONASHI_ADC_REFON_ADCON 3 参照電圧とAD変換器のパワーをオン

AC調光拡張ボード

KONASHI_AC_MODE_ONOFF 0 ON/OFFモード

KONASHI_AC_MODE_PWM 1 PWMモード

KONASHI_PWM_AC_PERIOD 10000 PWMモードの周期

KONASHI_AC_FREQ_50HZ 50 コンセントの周波数50Hz(東⽇本)

KONASHI_AC_FREQ_60HZ 60 コンセントの周波数60Hz(⻄⽇本)

ObjectiveC Android

ObjectiveC Android

Grove拡張ボード

KonashiDigitalIO0 0 デジタルI/Oの0ピン⽬

KonashiDigitalIO1 1 デジタルI/Oの1ピン⽬

KonashiDigitalIO2 2 デジタルI/Oの2ピン⽬

KonashiDigitalIO3 3 デジタルI/Oの3ピン⽬

KonashiDigitalIO4 4 デジタルI/Oの4ピン⽬

KonashiDigitalIO5 5 デジタルI/Oの5ピン⽬

KonashiDigitalIO6 6 デジタルI/Oの6ピン⽬

KonashiDigitalIO7 7 デジタルI/Oの7ピン⽬

KonashiAnalogIO0 0 アナログI/Oの0ピン⽬

KonashiAnalogIO1 1 アナログI/Oの1ピン⽬

KonashiAnalogIO2 2 アナログI/Oの2ピン⽬

konashi	AD変換拡張ボード(YE-EX001)

konashi	AD変換拡張ボードは、フィジカル・コンピューティング・ツールキットkonashiのアナログ⼊⼒を、I Cを⽤いて拡張するための
インタフェース基板です。	Groveセンサモジュールをそのまま接続して使⽤することができます。

initADC	/	init
Description
AD変換基板の初期化を⾏います。AD変換基板のアドレスを指定し、アナログの電圧値をI C経由で読み取ることができるように設定を⾏
います。

Syntax

2

2

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

[Konashi	initADC:address];

Parameters

address AD変換拡張ボードのアドレスを指定します。指定できる値はExtensionBoard/Constants/ADCをご覧ください。

Returns
なし

Example
スイッチS1がそれぞれOFF,OFF(アドレス	0x48)のときの初期化

[Konashi	initADC:ADDR_00];

readADCWithChannel	/	read
Description
チャンネル番号を指定して、AD変換基板からデータを受け取ります。

Syntax

[Konashi	readADCWithChannel:channel];

Parameters

channel AD変換拡張ボードのチャンネルを指定します。指定できる値はExtensionBoard/Constants/ADCをご覧ください。

Returns
なし

Example
チャンネル0から読み取り

[Konashi	readADCWithChannel:KONASHI_ADC_CH0];

readDiffADCWithChannels	/	readDiff
Description
チャンネル番号を指定して、AD変換基板から差動をとったデータを受け取ります。	この機能を使うと、チャンネル間の電圧の差を取得
することができます。

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

Syntax

[Konashi	readDiffADCWithChannels:channels];

Parameters

channel AD変換拡張ボードのチャンネルのペアにあたる値を指定します。指定できる値はExtensionBoard/Constants/ADCをご覧く
ださい。

Returns
なし

Example
チャンネル1を基準電圧(0V)としたときのチャンネル0の値を取得

[Konashi	readDiffADCWithChannels:KONASHI_ADC_CH0_CH1];

selectADCPowerMode	/	selectPowerMode
Description
AD変換拡張ボードに搭載されているICのモードを切り替えます。	IC内部の各機能への電源の供給をON/OFFすることができます。

Syntax

[Konashi	selectADCPowerMode:mode];

Parameters

mode AD変換拡張ボードの電源モードを指定します。指定できる値はExtensionBoard/Constants/ADCをご覧ください。

Returns
なし

Example
AD変換機能と参照電圧機能をONにする

[Konashi	selectADCPowerMode:KONASHI_ADC_REFON_ADCON];

konashi	AC調光拡張ボード(YE-EX003)

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

konashi	AC調光拡張ボード(YE-EX003)は、フィジカル・コンピューティング・ツールキットkonashi(YE-WPC001)のディジタル出⼒と
PWMを使⽤して、コンセントからの電源を使⽤するライトやヒータなどの出⼒を制御する拡張ボードです。

initACDrive	/	init
Description
AC調光拡張ボードで使⽤するピンの初期化を⾏います。

Syntax

[Konashi	initACDrive:mode	freq:freq];

Parameters

mode AC調光拡張ボードの動作モードを指定します。指定できる値はExtensionBoard/Constants/ACDriveをご覧ください。

freq 使⽤するコンセントの周波数を指定します。⻄⽇本では60Hz、東⽇本では50Hzです。

Returns
なし

Example
PWMモードを東⽇本で使⽤するために初期化する

[Konashi	initACDrive:KONASHI_AC_MODE_PWM	freq:KONASHI_AC_FREQ_50HZ];

onACDrive	/	on
Description
ON/OFFモードのとき、出⼒をONにします。

Syntax

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

[Konashi	onACDrive];

Parameters
なし

Returns
なし

offACDrive	/	off
Description
ON/OFFモードのとき、出⼒をOFFにします。

Syntax

[Konashi	offACDrive];

Parameters
なし

Returns
なし

updateACDriveDuty	/	updateDuty
Description
AC調光拡張ボードのDuty⽐を設定します。	この関数を使⽤するには，PWMモードに設定している必要があります．

Syntax

[Konashi	updateACDriveDuty:ratio];

Parameters

ratio Duty⽐を1から100で指定します。

Returns
なし

Example
Duty⽐を50%に設定する

[Konashi	updateACDriveDuty:50];

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

selectACDriveFreq	/	selectFreq
Description
AC調光拡張ボードで使⽤するコンセントの周波数を設定します。

Syntax

[Konashi	selectACDriveFreq:freq];

Parameters

freq 使⽤するコンセントの周波数を指定します。指定できる値はExtensionBoard/Constants/ACDriveをご覧ください。

Returns
なし

Example
PWMモードを東⽇本で使⽤するために周波数を設定する

[Konashi	selectACDriveFreq:KONASHI_AC_FREQ_50HZ];

konashi	Grove拡張ボード(YE-EX004)

konashi	Grove拡張ボード(YE-EX004)は、フィジカル・コンピューティング・ツールキットkonashi(YE-WPC001)の⼊出⼒ピンで、
Groveモジュールを使⽤できるようにする拡張ボードです。

konashi	2	では、PIOのピン数が変更(8->6)になっているため、該当するポートが使えません。

writeGroveDigitalPort	/	digitalWrite
Description

Copyright©	konashi,

YUKAI	Engineering	Inc	All	Rights	Resserved

	 	

Contact	us:	contact@ux-xu.com

ObjectiveC Android

ObjectiveC Android

ObjectiveC Android

Grove拡張ボードのディジタルポートの出⼒状態を設定します。

この関数はGrove拡張ボード向けに	digitalWrite	関数のニックネームとして定義されています。	プログラムの動作は	digitalWrite	関数と同
じです。

Syntax

[Konashi	writeGroveDigitalPort:(int)port];

readGroveDigitalPort	/	digitalRead
Description
Grove拡張ボードのディジタルポートの値を取得します。

この関数はGrove拡張ボード向けに	digitalRead	関数のニックネームとして定義されています。	プログラムの動作は	digitalRead	関数と同
じです。

Syntax

[Konashi	readGroveDigitalPort:(int)port];

readGroveAnalogPort	/	analogReadRequest
Description
Grove拡張ボードのアナログポートの値を取得するリクエストを	konashi	に送ります。

この関数はGrove拡張ボード向けに	analogReadRequest	関数のニックネームとして定義されています。	プログラムの動作は
analogReadRequest	関数と同じです。

Syntax

[Konashi	readGroveAnalogPort:(int)port];

https://www.facebook.com/konashi.yukai
https://twitter.com/yukaikk
http://www.ux-xu.com
mailto:contact@ux-xu.com

	Apps
	konashi inspector (iOS)
	konashi inspector (Android)

	Hardware
	API Reference
	Extension Board
	Hardware
	Introduction
	Concept
	Architecture
	Versions
	詳しいハードウェアのドキュメントはこちらをご覧ください。

	Specifications
	Supported devices
	Appearance
	Schematic
	konashi2.0
	konashi3.0

	Core functions
	Digital
	Analog
	PWM
	Communication
	I2C
	UART
	SPI

	Bluetooth Low Energy
	Services
	Characteristics

	Event-driven

	API Reference
	Constants
	Pin name
	PIO
	AIO
	PWM
	UART
	I2C
	SPI
	Function return
	Events

	Base
	initialize
	Description
	Syntax
	Parameters
	Returns

	find
	Description
	Syntax
	Parametar
	Returns

	findWithName
	Description
	Syntax
	Parameters
	Returns
	Examples

	disconnect
	Description
	注意
	Syntax
	Parameters
	Returns

	isConnected
	Description
	Syntax
	Parameters
	Returns

	peripheralName
	Description
	Syntax
	Parameters
	Returns
	Example

	Events
	addObserver(on)/addListener
	Description
	Syntax
	Parameters
	Returns
	Example

	removeObserver/removeListener
	Description
	Syntax
	Parameters
	Returns
	Example

	Android Promise
	done
	Description
	Syntax
	Parameters
	Returns
	Example

	fail
	Description
	Syntax
	Parameters
	Returns
	Example

	then
	Description
	Syntax
	Parameters
	Returns
	Example

	Digital I/O (PIO)
	pinMode
	Description
	Syntax
	Parameters
	Returns
	Example

	pinModeAll
	Description
	Syntax
	Parameters
	Returns
	Example

	pinPullup
	Description
	Syntax
	Parameters
	Returns
	Example

	pinPullupAll
	Description
	Syntax
	Parameters
	Returns
	Example

	digitalRead
	Description
	Syntax
	Parameters
	Returns
	Example

	digitalReadAll
	Description
	Syntax
	Parameters
	Returns
	Example

	digitalWrite
	Description
	Syntax
	Parameters
	Returns
	Example

	digitalWriteAll
	Description
	Syntax
	Parameters
	Returns
	Example

	Analog I/O (AIO)
	analogReference
	Description
	Syntax
	Parameters
	Returns

	analogReadRequest
	Description
	Syntax
	Parameters
	Returns
	Example

	analogRead
	Description
	Syntax
	Parameters
	Returns
	Examples

	analogWrite
	Description
	Syntax
	Parameters
	Returns
	Example

	PWM
	pwmMode
	Description
	Syntax
	Parameters
	Returns
	Example

	pwmPeriod
	Description
	Syntax
	Parameters
	Returns
	Example

	pwmDuty
	Description
	Syntax
	Parameters
	Returns
	Example

	pwmLedDrive
	Description
	Syntax
	Parameters
	Returns
	Example

	UART
	uartMode
	Description
	Syntax
	Parameters
	Returns
	Example

	uartBaudrate
	Description
	Syntax
	Parameters
	Returns
	Example

	uartWrite
	Description
	Syntax
	Parameters
	Returns
	Example

	I2C
	i2cMode
	Description
	Syntax
	[Konashi i2cMode:(int)mode];
	Parameters
	Returns
	Example

	i2cStartCondition
	Description
	Syntax
	Parameters
	Returns

	i2cRestartCondition
	Description
	Syntax
	Parameters
	Returns

	i2cStopCondition
	Description
	Syntax
	Parameters
	Returns

	i2cWrite
	Description
	Syntax
	Parameters
	Returns

	i2cReadRequest
	Description
	Syntax
	Parameters
	Returns

	i2cRead
	Description
	Syntax
	Parameters
	Returns

	SPI
	spiMode/spiConfig
	Description
	Syntax
	Parameters
	Returns

	spiWrite
	Description
	Syntax
	Parameters
	Returns
	Example

	spiReadData/spiRead
	Description
	Syntax
	Parameters
	Returns

	spiReadRequest
	Description
	Syntax
	Parameters
	Returns
	Example

	Hardware Control
	reset
	Description
	Syntax
	Parameters
	Returns
	Example

	batteryLevelReadRequest
	Description
	Syntax
	Parameters
	Returns
	Example

	batteryLevelRead
	Description
	Syntax
	Parameters
	Returns
	Example

	signalStrengthReadRequest
	Description
	Syntax
	Parameters
	Returns
	Example

	signalStrengthRead
	Description
	Syntax
	Parameters
	Returns
	Example

	Extension Boards
	AD変換拡張ボード
	AC調光拡張ボード
	Grove拡張ボード
	konashi AD変換拡張ボード(YE-EX001)
	initADC / init
	Description
	Syntax
	Parameters
	Returns
	Example

	readADCWithChannel / read
	Description
	Syntax
	Parameters
	Returns
	Example

	readDiffADCWithChannels / readDiff
	Description
	Syntax
	Parameters
	Returns
	Example

	selectADCPowerMode / selectPowerMode
	Description
	Syntax
	Parameters
	Returns
	Example

	konashi AC調光拡張ボード(YE-EX003)
	initACDrive / init
	Description
	Syntax
	Parameters
	Returns
	Example

	onACDrive / on
	Description
	Syntax
	Parameters
	Returns

	offACDrive / off
	Description
	Syntax
	Parameters
	Returns

	updateACDriveDuty / updateDuty
	Description
	Syntax
	Parameters
	Returns
	Example

	selectACDriveFreq / selectFreq
	Description
	Syntax
	Parameters
	Returns
	Example

	konashi Grove拡張ボード(YE-EX004)
	writeGroveDigitalPort / digitalWrite
	Description
	Syntax

	readGroveDigitalPort / digitalRead
	Description
	Syntax

	readGroveAnalogPort / analogReadRequest
	Description
	Syntax

